T Cell-Mediated Immunity: Activation of T Lymphocytes

Leonardo M.R. Ferreira, Ph.D. Assistant Professor Microbiology and Immunology CGS790, Spring 2022 Medical University of South Carolina

After today's lecture, you should know:

• How are T cells stimulated?

• How do few naïve T cells become many effector T cells?

• How to T cells communicate with other cells?

Why should we care?

• T cells are everywhere in the body

• T cells can see inside other cells

• T cells can see the future

Of 14 Nobel Prizes given to immunology research, 5 were related to T cells (tolerance, histocompatibility, cellular immunity, antigen presentation, checkpoint inhibition)

Why should we care?

- People born without functional T cells ("T-cell immunodeficiency, congenital alopecia, and nail dystrophy", FOXN1 mutations) develop repeated and persistent infections and die during infancy without treatment
- People that lose their CD4⁺ T cells ("Acquired immunodeficiency syndrome" AIDS) develop persistent infections and cancers and die 8-10 years following infection without treatment
- T cells can be modified to treat tumors using chimeric antigen receptors (CARs). CAR T cell therapies can lead to up in 93% remission in patients that did not respond to other treatments. But CAR T cells also have fatal side effects more often (5% vs. 0.3-1%)

What do T cells see?

Intracellular microbes		Examples
A Phagocyte	Phagocytosed microbes that survive within phagolysosomes Microbes that escape from phagolysosomes into cytoplasm	Intracellular bacteria: Mycobacteria <i>Listeria monocytogenes Legionella pneumophila</i> Fungi: <i>Cryptococcus neoformans</i> Protozoa: <i>Leishmania</i> <i>Trypanosoma cruzi</i>
B Nonphagocyti Ce red for Microbes that i nonphagocytic	c cell (e.g., epithelial cell)	Viruses: All Rickettsiae: All Protozoa: <i>Plasmodium falciparum</i> <i>Cryptosporidium parvum</i>

Naïve T cells see antigens in lymphoid organs, become activated, and execute their function in tissues upon seeing the same antigens

How do T cells see?

Joglekar & Li, Nature Methods 2020

Nature Reviews | Immunology Schatz & Li, 2011

The immune synapse

HLA-A2 peptide binding groove

TCR-peptide-HLA-A2 complex

The immune synapse

STCRDab, Oxford

T cell signal 1: TCR activation

APC antigen-presenting cell

Lck

lymphocyte-specific protein tyrosine kinase

ITAM

immunoreceptor tyrosine-based activation motif

CD3 ITAM diversity is required for T cell signaling and development

T cell signal 1: signal transduction

ZAP-70 zeta chain-associated protein of 70 kDa

LAT

linker for activation of T cells

ITK interleukin-2-inducible T-cell kinase

NFAT

Nuclear factor of activated T cells

Signal 1 is not enough

Schwartz, J Exp Med 1996

CD28 co-stimulation

Acuto & Michel 2003

CD28: a signal 2 to amplify signal 1?

Salojin JBC 2000

Salojin, JI 1999

CD28 amplifies TCR signaling

Acuto & Michel 2003

Nature Reviews | Immunology

Nature Reviews | Immunology

CD28 induces a unique survival signal

Sperling JI 1996

Stevens & Oltean Front Genet 2019

CD28 orchestrates membrane raft trapping and cytoskeletal reorganization

T cell activation requires costimulation

T-cell growth factor a.k.a. interleukin-2

pSTAT5 (pY694), 20 min

Ross & Cantrell Annu Rev Immunol 2018

Capers Zimmerman, Ferreira Lab (unpubl.)

IL-2 drives T-cell proliferation

Curtsinger & Mescher Curr Opin Immunol 2010

T cell activation

CD8⁺ T cell activation requires CD4⁺ T cell help

T cell activation: seeing is believing

Resting

Activated

Time course of T cell activation

Wax and wane of the T cell response

Alegre Nat Rev Immunol 2001

Time course of T cell activation

Receptors on the surface of T cells

The CD28 and B7 protein families

CD4⁺ T cell differentiation

T cell migration molecule cheat sheet

T cell homing receptor	Ligand on endothelial cell	Function of receptor: ligand pair
Naive T cells L-selectin	L-selectin ligand	Adhesion of naive T cells to high endothelial venule (HEV) in lymph node
LFA-1 (β ₂ -integrin)	ICAM-1	Stable arrest on HEV
CCR7	CCL19 or CCL21	Activation of integrins and chemotaxis
Activated (effector and memory) T cells E- and P- selectin ligand	E- or P- selectin	Initial weak adhesion of effector and memory T cells to cytokine-activated endothelium at peripheral site of infection
LFA-1 ($β_2$ -integrin) or VLA-4 ($β_1$ integrin)	ICAM-1 or VCAM-1	Stable arrest on cytokine-activated endothelium at peripheral site of infection
CXCR3, others	CXCL10, others	Activation of integrins and chemotaxis

Chimeric antigen receptor T cells

June & Sadelain NEJM 2018

Regulatory T cells

Nature Reviews | Immunology Vignali Nat Rev Immunol 2008

What are the components of the TCR complex? Which of these components are responsible for antigen recognition and which for signal transduction?

What are some of the molecules in addition to the TCR that T cells use to initiate their responses to antigens, and what are the functions of these molecules?

What is the principal growth factor for T cells? Why do antigen-specific T cells expand more than other (bystander) T cells on exposure to an antigen? What are the mechanisms by which CD4 ⁺ effector T cells activate other leukocytes?

Why do naive T cells migrate preferentially to lymphoid organs and differentiated effector T cells (which have been activated by antigen) migrate preferentially to tissues that are sites of infection?